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The static lattice Green9s function of y-Fe and FeTi 

W Frank, C Els%ser and M F2hnle 
Jmtihlt filr Physik, Max-Plan&-Institut mr Metallfonchung, Heisenbergshasse 1, 70569 
Stuttgart, Germany 

Received 9 June 1994 

Abstract The computational scheme of MacGillivray and ShoU for the calculation of the 
lattice Green’s function is extended to crystalline compounds with more than one atom in the 
unit cell. The latiice Green’s function is calcnlated for the high-temperature y-phase of Fe and 
for the intermetallic compound FeTi using force constants obtained from Bom-von K&nna3 fits 
to experimental lattice vibration spectra. 

The properties of defects in crystalline systems are strongly influenced by the static 
relaxation of the surrounding atoms. However, a self-consistent calculation of these 
relaxational displacements [l] by the ab initio electron theory is often very time consuming. 
Therefore it is highly desirable to obtain at least a good fist estimate for these displacements 
from the forces exerted on the various atoms (obtained either by empirical anrafze or by 
the ab initio electron theory) withii the linear response theory. 

The central quantity in this theory is the zero-frequency limit of the phonon Green’s 
function, the so-called static lattice Green’s function [Z], G,#(~K,  Z’K‘) ,  which supplies the 
connection between the Cartesian fi-components Fp(1’~’)  of the forces acting on the atom 
K‘  in the unit cell at the lattice vector 1‘ in the crystal and the a-component u.(.?K) of the 
displacement of the atom K in the unit cell at I ,  via 

u , ( ~ K )  = G , p ( l ~ ,  l ’ ~ ’ ) F p ( l ’ ~ ’ ) .  
PPl’ 

It may be calculated [Z] as the inverse of the force constant matrix a, G = VI, where @ 
is defined by 

where V denotes the crystal potential. 
The calculation of G becomes straightforward when considering periodic crystal 

structures. In this case and G do not depend on both 1 and 1’ but only on the lattice vector 
separating the two unit cells and therefore it is possible to set 1’ equal to zero. Instead of 
calculating 
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which would require the inversion of an infinite matrix, it is then convenient to consider 
the Fourier series 

1 
G , ~ ( K .  K'; I )  = G w 6 ( ~ .  K'; k) exp (ik . l )  

k 

1 
Q-B(K. K'; 1) = - 

N k  
Qa,d~. K'; k )  exp (ik I )  

with N denoting the number of unit cells and with 

G e p ( ~ .  K'; k)  = G m p ( ~ ,  K'; I )  exp ( 4 k .  I )  
I 

(4) 

(5) 

Q ~ ~ ( K .  IC'; k) = (P,B(K, K'; I )  exp (-ik. I ) .  (7) 

Having determined the 3n x 3n matrix @(k) via equation (7), where n denotes the number 
of atoms in the unit cell, we can obtain G(k) by inversion of this matrix [2], and then the 
lattice Green's function in real space may be obtained from equation (4). 

The necessary input for the whole calculation, i.e. the real-space force constant matrix 
Q o B ( ~ ,  K'; I ) ,  can be determined, e.g. from ab initio electron theory or from a Bom-von 
K&"n parametrization of an experimental phonon dispersion spectrum Phonon spectra 
measured via inelastic neutron scattering and corresponding Born-von b P n  fits are 
available in the literature for many materials. In the past, Green's functions have been 
published for several monatomic face-centred cubic (FCC) and body-centred cubic (BCC) 
metals for instance by Schober e$ al 131 and MacGillivray and Sholl[4]. In this contribution 
we apply the method outlined for monatomic systems in [4] to metals with monatomic and 
diatomic unit cells, namely y-Fe and Fez .  The force constant matrix in real space is 
obtained from the experimental phonon dispersion curves of Zarestky and Stassis [6] for 
y-Fe and of Buchenau et a1 [7] for Fez .  

As in [41, for the Brillouin zone integration we use the 'special k-point' grids proposed 
by Chadi and Cohen 151 in equation (4), which do not contain the r point, k = 0. Note 
that there is a singularity in G Q )  for k = 0, since at that point the eigenvalues of @(k) 
vanish. Because the r mode describes a translation of the whole crystal and therefore 
does not contribute to the crystal potential V we can just exclude the r point, which is 
guaranteed when using the special k-points. In the following we will label the different sets 
of special k-points by integers n = 1,2, . . . where the first set n = 1 contains two vectors 
in the irreducible Brillouin zone of FCC and BCC crystals, namely kl = (2n/a)(i, a, a) 
crystal. The higher labelled sets n + 1 are defined from the nth set by adding the eight 
vectors (2~r/a)(H/2"+~,  f1/2"+z, &1/2"+z) to each vector of the nth set. Furthermore, 
the convergence is improved by the scheme of MacGillivray and ShoU [4] who have shown 
that the Green's function may be extrapolated from the functions calculated with the k-point 
sets n and n- 1, i.e. g") and g("-'), to infinite n via & = 2g(") -g("-'). Our programme 
was tested for some monatomic metals, namely BCC Cr, FCC Cu, and FCC y-Fe, and for the 
two former systems we exactly reproduced the results of [4]. 

More interesting is the comparison (table 1) between our results for y-Fe and those of 
Schober [8] who used the method of Gilat and Raubenheimer [9] for the Brillouin zone 
integration. In both cases, the force constant matrix was determined by a sixth-neighbour 
Bom-von K&mh model of Zarestky and Stassis 161. The absolute differences between 
our and Schober's results are in the range m N-' with a maximum discrepancy of 

1 

and kz = (k /a ) (q ,  a. a), or one vector, k = (2n/a) (z ,  1 1 1  z, 5). for a simple cubic (SC) 
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Table 1. The stark Green's function G(1) of y-Fe in units of lo-' m N-'; 1 (in units of the 
lattice constant Q) labels the primitive Vectors of the Fcc lattice, d and fl denote the Canesian 
component5 x. y or L: 8(") and & indicae the elemenis C,(l) &rained by the summarion 
Dyer the nih IC-point set wiihont and with the exuapolatim. S e b W s  resulfs [SI are listed in 
the last column. Componens with m c  value are omitted. 

d IrB e3 e4 e&, From [SI 
(0. 0. 0) x x  =yy=rz 1.6% 1.716 1.736 1.742 

(1, 1, 0)  xx = YY 0.542 0.562 0.582 0.587 
22 0.468 0.488 0.508 0.513 
XY 0.198 0.198 0.198 0.198 

(2. 0. 0) x x  0.248 0.267 0.286 0.292 
yy = ZZ 0.328 0.348 0.368 0.373 

(2, I ,  1) xx 0.289 0.308 0.327 0.333 
yy = zz  0.284 0.304 0.324 0.328 
xy = X L  0.085 ~0.085 0.085 0.085 
YZ 0.062 0.063 0.064 0.063 

(2. 2. 0)  xx = YY 0.284 0.304 0.324 0.328 
LZ 0.210 0230 0.250 0.254 
X Y  0.123 0.123 0.123 0.123 

(3, 1. 0) xx 0.162 0.182 0.202 0.206 
YY 0.210 0.230 0.250 0.254 
ZL 0.190 0.210 0.230 0.235 
XY 0.038 0.038 0.038 0.038 

(2, 2, 2) xx = yy =zz 0.204 0.224 0,244 0.248 
xy = x z  = Y L  0.074 0.074 0.074 0.075 

(3. 2. 1) xx 0.186 0.205 0.724 0.229 
YY 0.190 0.210 0.230 0.233 
zz 0.158 0.178 0.198 0.202 
XY 0.074 0.074 0.074 0.075 
XZ 0.043 0.044 0.045 0.W 
Y: 0.040 0.040 0.040 0.040 

(4. 0. 0) xx 0.105 0.125 0.145 0.148 
yy =zz 0.153 0.173 0.193 0.197 

(3. 3, 0) x x  = YY 0.173 a193 0.213 0.216 
zz 0.117 0.137 0.157 0.160 
*Y 0.083 0.084 0.084 0.085 

6 x m N-l, similar to what was found by MacGillivray and Sholl[4] when comparing 
the data for copper obtained by their method and by Schober's method. 

In table 2 the results for Gap (K, K'; I )  of Fe3 are presented up to the primitive lattice 
vector I = a(2,O. 0) of the SC lattice with the basis atoms Ti at I + a(0,O.O) and Fe at 
1 +a($, i, i). The force constant matrix was determined by the fourth-neighbour Bom- 
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Table 2. The static Green's function G(1) of Fen in units of 10-l m N-I; 1 (in units of 
the lanice constant a) is a primitive vector of the sc lattice, K and K' denote the two atoms 
considered, Ti (1) or Fe (2), U and f i  the Canesian components x, y or I; g(") and 82 indicate 
the elements G;; (1) obtained with the summation over the nth k.point set without and with 
the extrapolation. Components with zero value are omitted. 

3 4 1 K*; U0 b-2 8 3  84 #e= g,,, 

0.909 0.945 0.962 0.981 0.979 
0.226 0.260 0.278 0.294 0.296 
0.028 0.027 0.027 0.026 0.027 
0.890 0.9% 0.941 0.958 0.938 

0.376 
0.111 
0.132 
0.020 
0.072 
0.004 
0.279 
0.189 

0.118 
0.029 
0.090 
0.060 
0.024 
0.007 
0.007 
0.039 
0.135 
0.040 
0.088 

0.413 
0.145 
0.169 
0.019 
O.lM 
0.004 
0.315 
0.221 

0.431 
0.162 
0.187 
0.019 
0.120 
0.004 
0.332 
0.238 

0.153 0.171 
0.028 0.027 
0.122 0.139 
0.093 . 0.110 
0.022 0.021 
0.006 0.006 
0.006 0.006 
0.067 0.084 
0.168 0.183 
0.039 0.039 
0.118 0.135 

0.450 0.449 
0.179 0.179 
0.206 0.205 
0.018 0.019 
0.134 0.137 
0.004 0.004 
0.351 0.349 
0.253 0.255 

0.188 
0.027 
0.154 
0.126 
0.020 
0.005 
0.005 
0.095 

,O.ZOl 
0.038 
0.148 

0.189 
0.026 
0.156 
0.127 
0.022 
0.006 
0.006 
0.101 
0.202 
0.039, 
0.152 

0.080 0.113 0.130 0.146 0.147 
0.015 0.014 0.014 -0.013 0.014 
0.035 0.064 0.081 0.093 0.098 
0.014 0.012 0.011 0.010 0.010 
0.085 0.116 0.133 0.147 0.150 
0.021 0,020 0.020 ~0.019 0.020 

0.163 
0.044 
0.067 
0.012 
0.009 
0.026 
0.001 
0.113 
0.053 

0.206 
0.073 
0.110 
0.010 
0.007 
0.052 
0.001 
0.153 
0.080 

0.224 
0.089 
0.129 
0.010 
0.W 
0.067 
0.001 
0.171 
0.097 

0249 
0.102 
0.153 
0.008 
0.005 
0.078 
0.001 
0.193 
0.107 

0.242 
0.105 
0.148 
0.010 
0.007 
0.082 
0.001 
0.189 
0.114 

von Kfirmh model of Buchenau et d [71. As couId already be expected from the force 
constants [7], matrix elements of the lattice Green's function corresponding to Fe and Ti 
atoms, respectively, are distinctly different, in contrast, e.g., to the elastic Green's function, 
and for both they differ fIom matrix elements of Bcc Cr [4] which is isoelectronic to FeTi. 
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This indicates that for lattice relaxations in the intermetallic compound the use of the proper 
lattice Green’s function is presumably essential. 

To summarize, in this work we have extended and applied the scheme of MacGillivray 
and Sholl[4] for the calculation of the static lattice Green’s function to the case of crystalline 
systems with more than one atom in the unit cell. Numerical results for y-Fe and FeTi, 
which we intend to use for the consideration of the self-trapped states of hydrogen isotopes 
(see, e.g., [IO]), are provided. 
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